Role of multidrug transporters in pharmacoresistance to antiepileptic drugs.
نویسندگان
چکیده
Epilepsy, one of the most common neurologic disorders, is a major public health issue. Despite more than 20 approved antiepileptic drugs (AEDs), about 30% of patients are refractory to treatment. An important characteristic of pharmacoresistant epilepsy is that most patients with refractory epilepsy are resistant to several, if not all, AEDs, even though these drugs act by different mechanisms. This argues against epilepsy-induced alterations in specific drug targets as a major cause of pharmacoresistant epilepsy, but rather points to nonspecific and possibly adaptive mechanisms, such as decreased drug uptake into the brain by intrinsic or acquired over-expression of multidrug transporters in the blood-brain barrier (BBB). There is accumulating evidence demonstrating that multidrug transporters such as P-glycoprotein (PGP) and members of the multidrug resistance-associated protein (MRP) family are over-expressed in capillary endothelial cells and astrocytes in epileptogenic brain tissue surgically resected from patients with medically intractable epilepsy. PGP and MRPs in the BBB are thought to act as an active defense mechanism, restricting the penetration of lipophilic substances into the brain. A large variety of compounds, including many lipophilic drugs, are substrates for either PGP or MRPs or both. It is thus not astonishing that several AEDs, which have been made lipophilic to penetrate into the brain, seem to be substrates for multidrug transporters in the BBB. Over-expression of such transporters in epileptogenic tissue is thus likely to reduce the amount of drug that reaches the epileptic neurons, which would be a likely explanation for pharmacoresistance. PGP and MRPs can be blocked by specific inhibitors, which raises the option to use such inhibitors as adjunctive treatment for medically refractory epilepsy. However, although over-expression of multidrug transporters is a novel and reasonable hypothesis to explain multidrug resistance in epilepsy, further studies are needed to establish this concept. Furthermore, there are certainly other mechanisms of pharmacoresistance that need to be identified.
منابع مشابه
The multidrug transporter P-glycoprotein in pharmacoresistance to antiepileptic drugs.
This review provides an overview of the knowledge on P-glycoprotein (P-gp) and its role as a membrane transporter in drug resistance in epilepsy and drug interactions. Overexpression of P-gp, encoded by the ABCB1 gene, is involved in resistance to antiepileptic drugs (AEDs), limits gastrointestinal absorption and brain access of AEDs. Although several association studies on ABCB1 gene with drug...
متن کاملEffect of Oxidative Stress on ABC Transporters: Contribution to Epilepsy Pharmacoresistance.
Epilepsy is a neurological disorder affecting around 1%-2% of population worldwide and its treatment includes use of antiepileptic drugs to control seizures. Failure to respond to antiepileptic drug therapy is a major clinical problem and over expression of ATP-binding cassette transporters is considered one of the major reasons for pharmacoresistance. In this review, we have summarized the reg...
متن کاملThe intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs.
Pharmacoresistance to antiepileptic drugs (AEDs) is a barrier to seizure freedom for many persons with epilepsy. For nearly two decades, pharmacoresistance has been framed in terms of factors affecting the access of AEDs to their molecular targets in the brain or the actions of the drugs on these targets. Shortcomings in this prevailing view led to the formulation of the intrinsic severity hypo...
متن کاملIn Vitro Assessment of the Effect of Antiepileptic Drugs on Expression and Function of ABC Transporters and Their Interactions with ABCC2.
ABC transporters have a significant role in drug disposition and response and various studies have implicated their involvement in epilepsy pharmacoresistance. Since genetic studies till now are inconclusive, we thought of investigating the role of xenobiotics as transcriptional modulators of ABC transporters. Here, we investigated the effect of six antiepileptic drugs (AEDs) viz. phenytoin, ca...
متن کاملInteraction of antiepileptic drugs with human P-glycoprotein in vitro.
About one-third of epilepsy patients are resistant to treatment with antiepileptic drugs (AEDs). This refractoriness is not fully understood, but is thought to be attributed to overexpression of multidrug transporters at the blood-brain barrier, particularly P-glycoprotein (Pgp). In certain cases pharmacoresistance can be overcome by add-on therapy, raising the question of whether the coadminis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 301 1 شماره
صفحات -
تاریخ انتشار 2002